Testing Plan

Group 3
June 8, 2022

Rev. 0.3.0 1

CONTENTS CONTENTS

Contents
[1__Introductionl 4
L1 OVerviewl. e e e e e e 4
2_Test Planl 4
2.1 Functional Tests|. oo 4
2.1.1 Testing Format|)
2.1.2 Considerationsl 5
2 UnitTests 5
2.2.1 Testing Format|)
222 Considerations 6
l3__Functional Tests| 6
BIUD . . 6
[3.1.1 Ul Setting] 6
[3.1.2 Element Display|] 6
..................................... 7
[3.2.1 File Handling| 7
[3.2.2 Action Handlingl 8
[3.2.3 Scripting|. 8
[3.2.4 Remote Interfacel oL 9
4__Unit Tests| 10
ETCord o 10
D .V R 10
[4.1.2 Enginel 10
BEI3Tooll - o oo o 10
BETAToold . - . . o 10
[4.1.5 ToolsFactoryl 10
M2 FElements. 11
[4.2.1 Elementsfactory|. 11
422 DocBElement| 11
[4.2.3 ScriptElement|o 0000 11
424 VisualBElement!.o oo 11
% L 11
4.3.1 MaimController] 11
[4.3.2 SizeOby| 12
M4 XMLI/O[... . 12
[4.4.1 Ingestion|. 12
5 _Test Records| 12
b1 TInformationl 12
O Reports| 12

Rev. 0.3.0 2

Revision History

CONTENTS

Revision History

Revision Date
0.1.0 14.03.22
0.1.1 14.03.22
0.2.0 14.03.22
0.3.0 15.03.22
Rev. 0.3.0

Author(s)

SSP526
DM1306
DM1306

KYC527

Description

Doc created in GDocs

Fit to KTEXtemplate

Add further information to all sections. Refocus
on product goals. Change overall test strategy
to bottom-up approach.

Add Unit Test Section, re-organise sections and
expend Unit Tests in Test Plan section

2 TEST PLAN

1 Introduction

1.1 Overview

This document describes our Testing Methodology that will be used through the devel-
opment cycle of our product. It will define Functional Tests for User Stories as found
in the Functional Specification document, and a broad overview of our methodology for
generating and applying automated Unit Tests.

2 Test Plan

2.1 Functional Tests

At the highest level, our codebase can be split into two super-modules: The UI Controller
and the Engine. This is a practical distinction, with the two running on seperate threads
to prevent heavy processing blocking the UI; the two super-modules may be divided
further into several modules each.

The UI Controller may be seen to minimally consist of:

e Menu Bar
e Tool List
e Element Properties Display
e Message Display
e 2D Graphics Display (Including Text and Tables)
e Image Display
e Video Display
e Audio Player Display
The Engine may be seen to minimally consist of:
e Document Parse

Tool Parse

Document Output

Event Handling

Tool Handling

Script Engine

Remote Interface

Rev. 0.3.0 4

2.2 Unit Tests 2 TEST PLAN

2.1.1 Testing Format

1. Refer to the appropriate Test if available.

2. Ensure that all testable dependancies have passed Unit Testing.
3. Build the software with the module to-be-tested included.

4. Enter the required input for the Test.

5. Compare the expected outcome with the actual outcome.

6. Record the result.

2.1.2 Considerations

The above modules may even be split several times further into their component parts;
we shall start our testing with these, employing the common JUnit Test framework to run
localised, automated Unit Tests ensuring that we have confidence in these parts as they
become available, prior to further high-level Functional testing. In a word, our strategy
is “bottom-up”.

2.2 Unit Tests

Automated Unit Testing shall be applied to “lower-level” modules. Every public method
on an Object should be tested for correctness of operation through the Unit Test suite
using a combination of random, invalid, and valid inputs and a combination standard
Unit Testing and “fuzzing” techniques. Unit tests should be implemented before the
functional tests in order to eliminate chance of operation relies on faulty method(s).
JUnit And JaCoCo are to be used for preforming such technique, with the former verifies
the functionality of individual method and the latter proves the effectiveness of the test
code. Using such tools minimise the development effort and more importantly possible
human errors which contribute to more reliable testing. As part of the QA of the unit
testing, code coverage must reach at least 70% for the test code to be recognised.

2.2.1 Testing Format

1. Refer to the appropriate Test if available.

2. Define and code test fixture of JUnit Test Suites.

3. Build the software with the module to-be-tested include.
4. Run JUnit Test Runner.

5. Check console for failure flags.

6. Check console for test code coverage with JaCoCo.

7. Record the result.

Rev. 0.3.0 5

3 FUNCTIONAL TESTS

2.2.2 Considerations

“Lower-level” modules have impacts on those above, and so flawed Unit Testing has the
potential to invalidate further Functional Testing. This means that our Unit Test suite
must be near-complete with high measured code coverage, to provide confidence in our
semi-automatic and manual Functional Tests.

3 Functional Tests

3.1 Ul
3.1.1 UI Setting
Menu Bar
Description Post valid and invalid menu bar operations to the Ul
for display.
Purpose The User requires access to operations from the menu
bar. Test this function.
Inputs Selection of menu bar items.
Expected Outcome | Available operations are displayed in the menu bars.

Tool List
Description Post valid and invalid tools to the Ul for display.
Purpose The User requires access to tools from the Tools menu.
Test this function.
Inputs Selection of Tools.
Expected Outcome | Available tools are displayed in the Tools menu.

Element Properties Display

Description Click on a visual element to show its’ properties. Click
off to hide them.
Purpose The User shall select a visual element, which should

reveal its’ properties in the Properties menu. Test
this function.

Inputs Mouse clicks.

Expected Outcome | An object’s properties are displayed in the Properties
menu on click on the object.

3.1.2 Element Display

Message Display

Rev. 0.3.0 6

3.2 Engine 3 FUNCTIONAL TESTS
Description Post individual blocking and non-blocking messages
to the Ul for display.
Purpose Users require notification about certain events within
the program. Test this function.
Inputs Blocking message (Action-required message). Non-
blocking message (Information message).
Expected Outcome | Messages containing the input text of the correct type
shall be displayed.

2D Graphics Display

Description Post valid and invalid 2D graphics objects to the Ul
for display.

Purpose The User may require that a certain 2D Graphical
element be displayed. Test this function.

Inputs Random 2D graphical object.

Expected Outcome

Valid objects should be displayed correctly. Invalid
objects should not be displayed.

Image Display

Description Post valid and invalid images to the UI for display.

Purpose The User may require that a certain image be dis-
played. Test this function.

Inputs Random images.

Expected Outcome

Valid images should be displayed correctly. Invalid
images should not be displayed.

Video Display

3.2

Description Post valid and invalid videos to the UI for display.

Purpose The User may require that a certain video be dis-
played. Test this function.

Inputs Random images.

Expected Outcome

Valid video should be displayed correctly. Invalid

video should not be displayed.

Engine

3.2.1 File Handling

Document Parse

Description Post valid and invalid documents to the engine to
parse.

Purpose The User shall open a document, and the engine will
attempt to parse it. Test this function.

Inputs Valid and Invalid presentation XML documents.

Expected Outcome

The parsed result of a valid document is returned.
Invalid documents return nothing.

Rev. 0.3.0

7

3.2 Engine

3 FUNCTIONAL TESTS

Tool Parse

Description Post valid and invalid tool documents to the engine
to parse.

Purpose The User shall open the application which shall at-
tempt to load a tool file. Test this function.

Inputs Valid and Invalid tool documents.

Expected Outcome | Valid documents are correctly parsed. Invalid docu-
ments return nothing.

Document Output

Description Try to save a presentation Stack Document.

Purpose The User shall edit a document and then save it. Test
this function.

Inputs Graphically edited document.

Expected Outcome | Valid XML document is written to the User’s specified
location.

3.2.2 Action Handling

Event Handling

Description Post valid and invalid events to the engine.

Purpose The User shall perform an action and the engine
should respond. Test this function.

Inputs User actions.

Expected Outcome | Correct response to a valid event. No response to an
invalid event.

Tool Handling

Description Post valid and invalid actions for tools.

Purpose The User shall select a tool from the Ul and use it,
triggering an action. Test this function.

Inputs User tool input.

Expected Outcome | Tool handler is run correctly, posting the required
items to the UL

3.2.3 Scripting
Script Engine

Description Ensure that the Script Engine can execute scripts and
with correct access to program data.

Purpose The User shall trigger an event associated with a
script, which should execute as expected. Test this
function.

Inputs Test Script.

Expected Outcome | Script executes correctly.

Rev. 0.3.0

3.2 Engine 3 FUNCTIONAL TESTS

3.2.4 Remote Interface

Remote Interface Connect

Description Connect remote interface to remote

Purpose The User may connect to a presenter. The User may
present and wish to connect to others. Test these
functions.

Inputs Connect requests.

Expected Outcome | Interface connects to remote.

Remote Interface Actions

Description Post actions into the Remote Interface. Receive out-
put actions from the Remote interface
Purpose The User may connect to a presenter, and wish to

receive actions. The User may present and wish to
transmit actions. Test these functions.

Inputs Test Actions.

Expected Outcome | Actions are received correctly in the engine. Actions
are output correctly.

Rev. 0.3.0 9

4 UNIT TESTS

4 Unit Tests

Test Plan is sectioned in same format as project tree.

4.1 Core
4.1.1 App
start

Description | Post actions into the Remote Interface. Receive out-
put actions from the Remote interface

Purpose Method is used to set-up scene with the given stage
variable. Test these functions.
Inputs Test Stage object.

Test Assert | assertNull

stop

4.1.2 Engine

start

stop
allowDraw
offerEvent
offerNewDoc
run

4.1.3 Tool

getName
getlD
getScript

4.1.4 Tools

getTools

4.1.5 ToolsFactory

startMakingElement

Rev. 0.3.0 10

4.2 Elements 4 UNIT TESTS

4.2 FElements

4.2.1 Elementsfactory
startMakingElement

4.2.2 DocElement

getPages

4.2.3 ScriptElement

getScriptText

4.2.4 VisualElement

getLoc
setLoc
getlD
setID
getZInd
setZInd
getSize

getFillColour

4.3 Ul
4.3.1 MainController

graceful Exit

drawText

configPage

clearPage

addTool
showNonBlockingMessage
initialize

Rev. 0.3.0 11

4.4 XML I/O

5 TEST RECORDS

4.3.2 SizeObj
getX

getY

getRot

44 XML I/O

4.4.1 Ingestion
parseDocXML

parseGenericXML

5 Test Records

5.1 Information

5.2 Reports

Rev. 0.3.0

12

	Introduction
	Overview

	Test Plan
	Functional Tests
	Testing Format
	Considerations

	Unit Tests
	Testing Format
	Considerations

	Functional Tests
	UI
	UI Setting
	Element Display

	Engine
	File Handling
	Action Handling
	Scripting
	Remote Interface

	Unit Tests
	Core
	App
	Engine
	Tool
	Tools
	ToolsFactory

	Elements
	Elementsfactory
	DocElement
	ScriptElement
	VisualElement

	UI
	MainController
	SizeObj

	XML I/O
	Ingestion

	Test Records
	Information
	Reports

